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Abstract. We study quantum entanglement in a single-level quantum dot in the linear-response regime. The
results show, that the maximal quantum value of the conductance 2e2/h not always match the maximal
entanglement. The pairwise entanglement between the quantum dot and the nearest atom of the lead
is also analyzed by utilizing the Wootters formula for charge and spin degrees of freedom separately.
The coexistence of zero concurrence and the maximal conductance is observed for low values of the dot-
lead hybridization. Moreover, the pairwise concurrence vanish simultaneously for charge and spin degrees
of freedom, when the Kondo resonance is present in the system. The values of a Kondo temperature,
corresponding to the zero-concurrence boundary, are also provided.

PACS. 73.63.-b Electronic transport in nanoscale materials and structures – 03.65.Ud Entanglement and
quantum nonlocality – 03.67.Mn Entanglement production, characterization, and manipulation

1 Introduction

Quantum entanglement, as one of the most intriguing
features of quantum mechanics, was extensively studied
during the last decade, mainly because its nonlocal con-
notation [1] is regarded as a valuable resource in quan-
tum communication and information processing [2]. The
question about the relation between the entanglement and
quantum phase transitions [3] have been addressed re-
cently, for either quantum spin [4–7] and fermionic [8–10]
systems, in hope to shed new lights on fundamental prob-
lems of condensed matter physics. For example, it was
shown for spin model [4], that the entanglement of two
neighboring sites displays a sharp peak either near or at
critical point where quantum phase transition undergoes.
Recently, a class of systems with divergent entanglement
length away from quantum critical point, since the corre-
lation length remains finite, was identified [5]. The spin-
orbital entanglement analysis was also shown to provide
a valuable insight to the nature of Mott insulators [6]. In
the field of fermionic systems, the local entanglement was
successfully used to identify quantum phase transitions in
the extended Hubbard model [10]. A separate issue con-
cerns using the entanglement as a criterion of quantum
coherence [11] when analyzing nonequilibrium dynamics
of the system with spontaneous symmetry breaking [7].

Here we follow the above ideas, but focus on the phys-
ical system which undergoes the crossover behavior in-
stead of a phase transition: a quantum dot in the Kondo
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regime. Namely, we address the question whether there ex-
ist a relation between entanglement and conductance for
this system? Some earlier study mentioned the total en-
tanglement of electronic degrees of freedom in the SU(4)
system below the Kondo temperature, without determin-
ing a qualitative measure of such an entanglement [12]. In
this paper, we consider the SU(2) case, and analyze two
different definitions of the entanglement between quan-
tum dot and the leads: first based on the von Neumann
entropy, and second utilizing the Wootters formula [13]
for the formation concurrence of two-qubit system.

2 The model and its numerical solutions

We study a model of a quantum dot with a single rele-
vant electronic level coupled to the left (L) and right (R)
metallic electrodes. The Hamiltonian of the system is

H = HL + VL + HC + VR + HR, (1)

where HC models the central region, HL(R) describes the
left (right) lead itself, and VL(R) is the coupling between
the lead and the central region. Namely, we have

HC = εdnd + Und↑nd↓,

HL(R) = −t
∑

j,j+1∈L(R)
σ=↑,↓

(
c†jσcj+1,σ + h.c.

)
,

VL(R) = −V
∑

σ

(
c†jL(R)σ

d + h.c.
)

. (2)
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Fig. 1. The Anderson impurity model realized as a double
quantum dot attached to the leads. The dot is described with
the energy level εd and the Coulomb interaction U .

Here, nd =
∑

σ d†σdσ is the quantum-dot charge, εd is the
position of the molecular level and U is the Coulomb repul-
sion between two electrons. Both HL(R) and VL(R) terms
have a tight-binding form, with the hopping t and the
dot-lead hybridization parameter V , c†jσ (cjσ) creates (de-
stroys) an electron with spin σ on site j, the indexes jL(R)

denotes terminal sites of the left (right) electrode. The
system is depicted schematically in Figure 1.

There are many theoretical methods in the exist-
ing literature, developed to study the electron transport
in the presence of interaction. In particular, the zero-
temperature conductance of the quantum dot acting as an
Anderson impurity were obtained within the Bethe ansatz
approach [14]. For the more general situation, one can re-
fer to the Numerical Renormalization Group [15] or to
the nonequilibrium Keldysh formalism [16]. For example,
the former approach was succesfuly generalized to study a
molecule with the electron-phonon coupling [17], whereas
the latter was adapted for an analysis of the competition
between the Fano and the Kondo resonance in various
nanodevices [18].

However, since we are interested either in equilib-
rium transport properties or in the ground-state quantum
entanglement, the most useful choice is the variational
method recently proposed by Rejec and Ramšak [19,20],
in which the real-space correlation functions are obtained
directly. For the system described by the Hamiltonian (1)
the method converges to the exact solution [14], it can
also be generalized for multiple quantum dots [19], for the
case with a nonzero magnetic field [20], or combined with
an ab initio wave-function readjustment [21] in the frame-
work of EDABI method [22].

3 The quantum entanglement

For the spin s = 1/2 fermionic system, there are four
possible local states at each site, |ν〉j = |0〉j , | ↑〉j , | ↓
〉j , | ↑↓〉j. The dimension of the N -site system is then
4N and |ν1, ν2, . . . , νN 〉 =

∏N
j=1 |νj〉j are its natural ba-

sis vectors. Alternatively, one can label the basis vectors
by specifying occupation numbers for each site and spin
|ν1 . . . νN 〉 ≡ |n1↑ . . . nN↑〉 |n1↓ . . . nN↓〉 , with njσ = 0, 1.
The reduced density matrix for the ground state |Ψ〉 is

ρiσ,jσ′ = Triσ,jσ′ |Ψ〉〈Ψ |, (3)

where Triσ,jσ′ stands for tracing over all sites and spins
except the iσ and jσ′th sites.
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Fig. 2. The local entanglement (a) and normalized conduc-
tance (b) for the system in Figure 1 as a function of the dot
energy level εd and dot-lead hybridization V (changed in steps
of 0.05t).

3.1 Local entanglement and conductance

We focus now on the local entanglement [9], which ex-
hibits the quantum correlations between local state of a
selected jth site (e.g. the quantum dot) and the other
part of the system (here: the leads). For i ≡ j = d and
σ′ ≡ σ̄, the reduced density matrix, defined by equa-
tion (3), takes the form

ρd = u+ |0〉 〈0|+ w1 |↑〉 〈↑|+ w2 |↓〉 〈↓|+ u− |↑↓〉 〈↑↓| , (4)

where

u+ = 〈(1 − nd↑)(1 − nd↓)〉 , w1 = 〈nd↑(1 − nd↓)〉 ,

w2 = 〈(1 − nd↑)nd↓〉 , u− = 〈nd↑nd↓〉 , (5)

and the averaging is performed for the system ground
state. Consequently, the corresponding von Neumann en-
tropy Ev (hereinafter called the local entanglement) mea-
sures the entanglement of the states of quantum dot
(j = d) with that of the remaining N − 1 sites, and is
given by

Ev = −u+ log2 u+ −w1 log2 w1 −w2 log2 w2 − u− log2 u−.
(6)

In Figure 2 we compare the the local entanglement Ev

with the conductance calculated from the Rejec-Ramšak
two-point formula [19]

G = G0 sin2 π

2
E(π) − E(0)

∆
, (7)
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where G0 = 2e2/h is the conductance quantum,
∆ = 1/Nρ(εF ) is the average level spacing at Fermi en-
ergy, determined by the density of states in an infinite
lead ρ(εF ), E(π) and E(0) are the ground-state energies
of the system with periodic and antiperiodic boundary
conditions, respectively. We found that the system size
of the order of N ∼ 1000 provides an excellent conver-
gence for both the conductance G and the local entan-
glement Ev (the latter aspect has not been analyzed nu-
merically before). In particular, the data for N = 1000
cannot be distinguished from the ones for N = 2000 in
the scale of Figure 2. We also checked that the results are
insensitive to the number of basis functions composing the
Rejec-Ramšak variational wave-function [19], providing it
is �3. When calculating correlation functions (5), deter-
mining the density matrix (4), one has to choose boundary
conditions which minimize the ground-state energy for a
given system size N : namely, periodic for N = 4k+2, and
antiperiodic for N = 4k [23] for the half-filling [24].

Surprisingly, the maximal entanglement between a
quantum dot and leads not always match the maximal
conductance G = G0 = 2e2/h. For small values of the dot-
lead hybridization (V � 0.25t for U = t), Ev has a mini-
mum at the particle-hole symmetric point εd = −U/2. It is
well known [25] that in the limit V 2/t � U the Anderson
Hamiltonian (1) reduces to the symmetric Kondo model
with an exchange coupling ρ(εF )JK = 8V 2/πU

√
4t2 − εF .

This observation suggest an important role of the local-
ized moment presence in the dot, which strongly affects
the entanglement between the quantum dot and the leads,
without observable change to the conductance. The lat-
ter refers to the situation below the Kondo temperature
TK ∝ exp(−1/ρ(εF )JK), above which the conductance
at the particle-hole symmetric point εd = −U/2 is de-
pressed and, subsequently, each zero-T Kondo peak dis-
played in Figure 2b splits into Coulomb-blockade peaks
present in a finite-T situation [15–18]. In particular, for
U = t and V = 0.25t, the exact formula [26] gives the
value of TK/t ≈ 3 mK/eV, which seems to be in the ex-
perimentally accessible range. A finite-T analysis is, how-
ever, beyond the scope of this paper, since we focus here
on T = 0 situation. A further discussion of the relation
between spin fluctuations and the entanglement at the
ground state is provided below.

For the better overview of the system properties we an-
alyze them as functions of the dot filling 〈nd〉, as displayed
in Figure 3. The universal formula for the conductance
(not shown) follows from the Luttinger theorem [27]

G = G0 sin2(π 〈nd〉 /2), (8)

whereas Ev evolves gradually from the limit

EU=0
v = −〈nd〉 log2

〈nd〉
2

− (2−〈nd〉) log2

(
1−〈nd〉

2

)
(9)

to

EU=∞
v = − (1−〈nd〉) log2 (1−〈nd〉) − 〈nd〉 log2

〈nd〉
2

,

(10)
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Fig. 3. The local entanglement Ev (a) and spin-magnitude pa-
rameter ΘS ≡ (4/3)〈S2

d〉 (b) as a function of the dot filling 〈nd〉
and dot-lead hybridization V . The magnitude of hybridization
V goes from 0.1t to 0.5t in steps of 0.05t. The limiting curves
for U/V = 0 and U/V = ∞ are depicted with dashed lines.

as presented in Figure 3a. Therefore, in the strong cou-
pling limit Ev has two maxima at 〈nd〉 = 2/3 and 4/3,
instead of a single one for 〈nd〉 = 1, present in the nonin-
teracting case. The major qualitative difference between
our results and that obtained for the extended Hubbard
model [10] is that Ev behaves analytically for any U < ∞.
This is because the Kondo system, considered here, shows
the crossover behavior instead of a quantum phase tran-
sition present in the Hubbard chain.

One can also observe, that the entanglement behavior
near the particle-hole symmetric point 〈nd〉 = 1 is deter-
mined by the magnitude of spin fluctuations, presented in
Figure 3b. As a measure of such fluctuations, we choose a
parameter [28]

ΘS ≡ 4
3
〈S2

d〉 = 〈nd〉 − 2 〈nd↑nd↓〉 , (11)

which obeys the inequality

〈nd〉
(

1 − 〈nd〉
2

)
� ΘS � 1 − |1 − 〈nd〉| , (12)

where the lower and the upper limit refers to the U = 0
and U = ∞ case, respectively. In particular, for 〈nd〉 = 1
the spin-fluctuation parameter varies from ΘS = 1/2 for
free fermions to ΘS = 1 for the localized spin-1/2. The
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charge fluctuations are determined by ΘS as Var{nd} ≡
〈n2

d〉 − 〈nd〉2 = 〈nd〉(2 − 〈nd〉) − ΘS , so for 〈nd〉 = 1 and
U = ∞ we obtain Var{nd} = 0. The vanishing of charge
fluctuations and the value of the spin-square 〈S2

d〉 = 3/4
allows one to consider the localized spin 1/2, a presence of
which governs the ground-state properties at the strong-
coupling limit. The density matrix (4) takes thus the form
ρd = (|↑〉 〈↑|+ |↓〉 〈↓|)/2, which brought us to the value of
the local entanglement Ev = 1 at the particle-hole sym-
metric point. In contrast, for the noninteracting system all
coefficients of the density matrix (4) are equal to 1/4 and
the local entanglement reaches its maximal value Ev = 2
(for 〈nd〉 = 1). The entanglement drop with the increas-
ing coupling near the particle-hole symmetric point can
therefore be explained as an effect of the formation of
a localized moment inside the dot.

The correspondence between inequalities (12) and the
limits defined by equations (9) and (10) become straight-
forward when expressing the coefficients of the density ma-
trix (4) as functions of 〈nd〉 and ΘS , what leads to the local
entanglement

Ev = −
(

2 − 〈nd〉 − ΘS

2

)
log2

(
2 − 〈nd〉 − ΘS

2

)

−
( 〈nd〉 − ΘS

2

)
log2

( 〈nd〉 − ΘS

2

)
− ΘS log2

ΘS

2
. (13)

Equation (13) with the limits given by (12) relates the en-
tanglement between the quantum dot and the leads to the
local moment formation inside the dot. It also express the
local entanglement Ev in terms of measurable quantities:
the dot occupation 〈nd〉 and the spin-square magnitude
〈S2

d〉 contained in the parameter ΘS (11). In contrast, the
spin fluctuations are absent in equation (8) for the conduc-
tance G, which is fully determined by the dot filling 〈nd〉.
One can note equation (13) is model-independent, provid-
ing we consider the lattice system with one orbital per
site. Thus, for the system with quantum phase transition,
such as that considered by Gu et al. [10], the nonanalyti-
cal behavior of the local entanglement Ev is equivalent to
the nonanalytical behavior of the spin-magnitude param-
eter ΘS .

3.2 The fermionic concurrence

We consider here the entanglement of two qubits, one as-
sociated with the electron localized on a quantum dot and
other with the nearest one placed in a lead. The physical
realization of individual qubits may, in principle, employ
charge or spin degrees of freedom of the system in Fig-
ure 1.

The reduced density matrix (3) for the pair of elec-
trons with equal spins (say σ ≡ σ′ =↑), one localized on
a quantum dot and other on a nearest lead atom (i = d,
j = jL(R)), can be written as [29]

ρi↑,j↑ =

⎛

⎜⎝

uc
+ 0 0 0
0 wc

1 zc 0
0 (z∗)c wc

2 0
0 0 0 uc−

⎞

⎟⎠ , (14)

where

uc
+ = 〈(1 − ni↑)(1 − nj↑)〉, wc

1 = 〈ni↑(1 − nj↑)〉,
wc

2 = 〈(1 − ni↑)nj↑〉, zc = 〈c†j↑ci↑〉, uc
− = 〈ni↑nj↑〉. (15)

The upper index c stands to denote, that the density ma-
trix (14) refers to the charge degrees of freedom, since the
spin direction is arbitrarily chosen for both particles.

We use now the concurrence C as a measure of the
entanglement for such a two-qubit system. The closed-
form expression, derived by Wootters [13], reads

C = max
{
0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
. (16)

The λi’s are the eigenvalues of the matrix product ρ ·
(σy

i ⊗σy
j )ρ∗(σy

i ⊗σy
j ), and λ1 � λ2 � λ3 � λ4. Since there

exists a monotonous relation between the concurrence C
and the entanglement of formation Ef = −x log2 x−(1−x)
log2(1 − x), where x = 1/2 +

√
1 − C2/2 [13], C is widely

used instead of Ef in the literature.
For the density matrix ρi↑,j↑ (14) the corresponding

concurrence can be calculated from equation (16) as

Ci↑,j↑ = 2 max
{
0,

∣∣∣〈c†i↑cj↑〉
∣∣∣

−
√
〈ni↑nj↑〉 (1 − 〈ni↑〉 − 〈nj↑〉 + 〈ni↑nj↑〉)

}
. (17)

Hereinafter, we call Ci↑,j↑ a charge concurrence, since it is
related to the charge degrees of freedom.

Alternatively, one can consider the full two-site den-
sity matrix ρij = Trij |Ψ〉〈Ψ | (with i = d, and j = jL(R)

again) and project out all the states except from these cor-
responding to ni = nj = 1. The resultant 4×4 density ma-
trix ρsi,sj = ρ̃si,sj /Trρ̃si,sj describes the entanglement ac-
cessible by spin manipulation with a particle-conservation
constrain [30]. The matrix ρ̃si,sj has a general structure
of ρi↑,j↑ given by equation (14), with the elements (15)
replaced by

us
+ = 〈ni↑(1 − ni↓)nj↑(1 − nj↓)〉

us
− = 〈(1 − ni↑)ni↓(1 − nj↑)nj↓〉

ws
1 = 〈ni↑(1 − ni↓)(1 − nj↑)nj↓〉

ws
2 = 〈(1 − ni↑)ni↓nj↑(1 − nj↓)〉

zs =
〈
S+

j S−
i

〉
= 〈c†j↑cj↓c

†
j↓cj↑〉. (18)

The label s indicates that we are working know with the
spin degrees of freedom, as charges of the i and j sites
are chosen. The concurrence, obtained by applying the
definition (16) to the density matrix ρsi,sj , is called a spin
concurrence.

The charge and spin concurrence is shown in Figure 4
as a function of the dot energy level εd. Again, we observe
an excellent convergence of both the studied quantities for
the system size of the order of N ∼ 1000. Although the
charge and spin concurrence are, in principle, two different
physical quantities, they reach the limit C = 0 simultane-
ously for all the analyzed values of V and U . Therefore,
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Fig. 4. The charge (a) and spin (b) pairwise concurrence for
the system containing one qubit localized on quantum dot and
other on the nearest atom of the lead.

we can conclude that below the critical value of the hy-
bridization V < Vc(U) and in the Kondo regime, the qubit
localized on the quantum dot is not entangled with other
placed on the top of the lead for neither charge nor spin
degrees of freedom. This is because of large quantum fluc-
tuations in each lead (modeled as a noninteracting Fermi
gas), which therefore destroy the entanglement for a weak
dot-lead coupling.

The values of εd and 〈nd〉, corresponding to C = 0 are
depicted in Figure 5. To complement the analysis we also
provide, in Table 1, the values of the symmetric Kondo
temperature [26], corresponding to the critical hybridiza-
tion Vc(U), at which the concurrence vanish in the ground
state. Although the numerical results presented in Fig-
ure 5 refers to T = 0, it is clear that in the finite-T
situation the conductance G ≈ G0 at the particle-hole
symmetric point if T � TK , and that the concurrence C
decrease with T due to dephasing. Therefore we can con-
clude, that the coexistence of zero concurrence and maxi-
mal conductance can be observed for U � t if the relative
temperature T/t is of the order of a few mK/eV. Another
interesting feature of these results is the universal (inter-
action independent) behavior of the maximal dot filling
〈nd〉 = 〈nd〉max, for which the entanglement C � 0, with
V/t → 0 (cf. Fig. 5b). This observation can be rational-
ized by using equation (17) and putting Ci↑,j↑ = 0. Then,
in the perturbative limit V � t, we obtain

〈nd〉max ≈ 23/2|〈c†i cj〉| ≈ 25/2(V/t)2,
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Fig. 5. The values of dot energy level εd (a) and average occu-
pation 〈nd〉 (b) corresponding to zero concurrence, as a func-
tion of hybridization V and Coulomb interaction U (specified
for each dataset). The perturbative limit V � t is also shown.

Table 1. The critical values of hybridization Vc on the zero-
concurrence boundary for εd = −U/2, the corresponding ex-
change coupling ρ(0)JK = 4V 2/πUt, and the Kondo tempera-
ture [26].

U/t Vc/t ρ(0)JK TK/t
(mK/eV)

0.5 0.23 0.135 360
1.0 0.26 0.086 8.6
2.0 0.31 0.061 0.13

up to the quadratic terms. The agreement with the nu-
merical data is perfect for V/t � 0.1.

4 Summary

We analyzed the local entanglement between the quantum
dot and the leads as a function of the dot energy level εd,
the dot-lead hybridization V and the intra-dot Coulomb
repulsion U . The measure of this entanglement, the von
Neumann entropy Ev, evolves gradually from the weak-
coupling limit, in which the maximal Ev match the max-
imal quantum value of the conductance G = G0 = 2e2/h,
to the strong-coupling situation, where maximal G corre-
sponds to the local minimum of Ev. This behavior was
explained in terms of local moment formation inside the
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dot, which took place when the charge transport is domi-
nated by the Kondo effect.

Finally, we defined the pairwise concurrence, measur-
ing the entanglement between a pair of qubits: one local-
ized on the dot and other on the nearest atom of the lead,
for charge and spin degrees of freedom separately. Both
quantities vanish simultaneously in the Kondo-resonance
range, where the weakly-entangled system show the max-
imal conductance. We predict the latter to be observable
at the temperature range of T/W ∼ 1 mK/eV (where
W = 4t is the lead bandwidth), which seems to be accessi-
ble within the present nanoscale experimental techniques.
The universal dependence of the maximal dot filling,
above which the concurrence vanish, 〈nd〉max ≈ 25/2(V/t)2
for V/t � 1, was also identified.
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